U.S. Environmental Protection Agency

Ravenswood PCE Superfund Site

Priority Panel March, 2013

Anthony C. lacobone

Remedial Project Manager – Region 3

Ravenswood Site Map

Ravenswood PCE Superfund Site

- History
 - PCE contamination discovered in municipal production wells in 1989
 - Contamination from 3 possible sources.
 - Exemption 5: AC/AWP

Ravenswood PCE Superfund Site

- Removal Action
 - Installation of two new production wells
 - Completed August 2004
 - Wells were installed to compensate for reduced pumping capacity.

Ravenswood PCE Superfund Site

- Remedial Investigation (RI)
 - Began in 2007
 - Included a Treatability Study to test AS/SVE.
 - 9 Air Sparging wells
 - 3 Soil Vapor extraction wells
 - A portable AS/SVE unit system was moved from the Vienna PCE Site for this study.
 - System became operational in June 2009.

Issues

- Groundwater contamination is being pulled towards the production wells
- •Ravenswood supplies water for the neighboring municipalities as well as the city itself (app 6,000 citizens)
- •Currently, contaminated water is run through a air stripper and then blended to ensure production water is below MCLs.
- •Air Stripper is aging and beyond it's design lifespan.

PCE has been consistently detected in production wells;

Table 5-2 Volatile Organic Compounds Detected in Public Supply Wells

Sample Location: Sample Date:				PW2 2/2/10	PW2 2/17/10	PW2 3/4/10	PW2 3/17/10	PW3 8/31/07	PW3 12/3/08	PW3 10/1/09	PW3 11/23/09	PW3 1/6/10	PW4 5/8/07
Bromomethane	0.5	8.7		R	77.00							0.96 J	
Acetone	5	22000		R			R	R	R	R		R	R
Carbon Disulfide	0.5	1000											
Methylacetate	0.5	37000					R	A TOTAL MARKET				-3375270	
Methylene chloride	0.5	4.8	5										2000
cis-1,2-Dichloroethene	0.5	370	70						0.16 J				
2-Butanone	5	7100		R		R	R	R					
Chloroform	0.5	0.019		8									
Cyclohexane	0.5	13000											
Carbon tetrachloride	0.5	0.2	5	i maryen									
Methylcyclohexane	0.5									teramento amb			
Bromodichloromethane	0.5	0.12											
Tetrachloroethene	0.5	0.11	5	1.9	3.5 J	3.4	5 L	30	24 J	14	28	29	
2-Hexanone	5	47											
Dibromochloromethane	0.5	0.15											
Bromoform	0.5	8.5											

Notes

All results are in microgram per liter (µg/L)

Blank cells indicate analyte not detected or detected in associated blank sample.

Blend = Drinking water in distribution system

Bold values = MCL or RSL exceeded

CRQL - contract required quantitation limit

MCL - maximum contaminant level, December 2009.

RSL - Regional Screening Level - May 2010

STRIPPEREFF = Air stripper effluent

STRIPPERINF = Air stripper influent

Data Qualifiers

J - Analyte Present. Reported value may not be accurate or precise.

L - Analyte present. Reported value may be biased low. Actual value is expected to be higher.

R - Rejected result. Analyte may or may not be present in sample.

Selected Remedy ROD 2011

- In Situ AS/SVE
 - Modification of the treatability study and installation of a new AS/AVE.
 - Estimated Construction Costs of Remedial Action are \$800,000.
 - Total costs including 10 years of O&M are \$2,250,000.00
- Groundwater and Vapor Monitoring
- Wellhead Treatment of City Production Wells.
- Institutional Controls

Two distinct source areas, One combined plume

Existing treatment system on the left, New expanded system on the right.

Ravenswood PCE Site

Risks

- Groundwater
 - Plume moving towards production wells.
 - Current/Future risk from ingestion and dermal route for noncancer hazards
 - Current/Future risk from ingestion, dermal and inhalation routes for cancer hazards
- Groundwater (Ecological)
 - Loss of plume control increases ecological risk to Ohio Rive and Sandy Creek

Ravenswood RA Considerations

- Ravenswood supplies drinking water for 6,000 citizens.
- Venturi Air stripper is an older design, past its design life and likely to fail.
- Production wells supply plume control, if the wells are shut down;
 - 6,000 residents lose water.
 - Ravenswood loses a primary revenue source.
 - Ecological risk increases.
 - Remedy becomes much more difficult and expensive as a plume control mechanism would be needed.

Ravenswood RA Considerations Continued

- Remedy requires a minimal financial investment of \$800,000
- Construction Completion is scheduled for fiscal 2013.